Technology white paper

SILVIA’s FUNCTIONAL
ARCHITECTURE AND
INTERACTIONS FLOW

Conversational Applications That Listen....and Talk

®

COGNITIVE

White paper

SILVIA INPUT
DECONSTRUCTION
AND OUTPUT
CONSTRUCTION

Copyright © 2016 Cognitive Code.All Rights Reserved. @

Table Of Contents

OVERVIEW.. .o, 1
P RE-PIRCICES S| INCSL: : casnmass s sasmne s ssammnasss 3
B | T — V,
CONTEXT SENSITIVITY .covvviiiiiiinnnens 3
CONCEPT SUBSTITUTION................ 10
FINAL OUTPUT.....coiiiiiiiiiiiieeieeen, 11

Copyright © 2016 Cognitive Code.All Rights Reserved.

OVERVIEW

The SILVIA technology employs several unique algorithms to transform human
language input into the n-dimensional conceptual space used by SILVIA's core, and
to generate a set of possible "hits" in SILVIA's inputoutput blocks, otherwise known
as behaviors. This collection of Input Deconstruction and evaluation techniques
allows SILVIA to be flexible and organic in the way that she interprets user input
and in the way that she derives sets of probabilistic 10 blocks from that input.

Likewise the SILVIA technology employs multiple algorithms to transform SILVIA's
conceptual output into human language. As with Input Deconstruction, this
collection of patented techniques for Output Construction allows SILVIA to be
flexible and organic, but as applied to the way that she assembles her responses to
the user.

One key benefit to the collection of Input and Output components is the flexibility
inherent in the system. Given even a small set of behaviors from which to work,
SILVIA can immediately begin to exhibit emergent complexity in her ability to
interpret meaning. Language rules are automatically inferred from the human
language training data and from the probabilistic nature inherent in the algorithms.

By default, SILVIA never strictly enforces syntax rules while interpreting your input.
Wish to talk like Yoda you do? Not a problem. SILVIA factors speaker
idiosyncrasies into her equations, and will gladly interpret your meaning anyway.
Of course, under mission-critical circumstances, one or more input filters may be
flagged by a trainer as requiring strict syntax enforcement. "SILVIA, open the
airlock please”, would be an ideal candidate for such a flag.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. ove rview 1

OVERVIEW

The most critical technologies to the pre-processing effort lie in the production of
the input/absorber coefficients. These algorithms first transform human language
Input into the conceptual structures that SILVIA's brain can use. Then, working in
that concept-space, SILVIA can, in a context sensitive way, traverse the conceptual
network of her knowledge base. She simultaneously traverses the localized
conceptual network of the user's input to infer a resultant ordered n-length list or
"stack” of most-likely matches from SILVIA's internal behavior and absorber data.

Once the Input Deconstruction phase has produced this ordered list, SILVIA can
then derive her responses using the behavior data referenced by the list as a
starting point. We will discuss the output in a different section of this white paper.

COGNITIVECODE.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. ove rview 2

PRE-PROCESSING

Before the above describe sub-system is invoked as a run-time process, there are
certain pre-processing steps that must occur. The conceptual pre-processing is
required for the algorithm to work in a balanced fashion, whereas the absorber
(input pattern) pre-processing is mainly for purposes of optimization.

Concepts, Weights, and Roots

Using a series of algorithms, concept weights, and concept roots, SILVIA
calculates a per-absorber value that represents an "ideal" matching input value.
This pre-processing step is vital to the ability of SILVIA to rapidly find the best
match of utterance to absorber. Conceptual pre-processing must be triggered
anytime there has been a change in the base concept data. The absorber
pre-processing must occur for newly created absorbers, when an absorber is
modified, or if there has been a change in one of the statistical weights of an
absorber's associated base conceptual data. Both conceptual and absorber
pre-processing steps take place almost instantaneously, and can therefore be
invoked as often as such changes occur without performance penalty. Again, note
that by pre-processing the absorbers in this manner, significant performance
improvements are achieved at runtime, as SILVIA can quickly discard absorbers or
even entire behaviors where an input with a pre-calculated maximum falls far
below the element's coefficient threshold.

If an absorber has "wildcards” for intercepting parts of user input, the wildcard
symbols and captured portion of the input is not considered as part of the
coefficient production process. For instance, if an absorber contains the phrase,
"do you like *" and the user says "do you like talking to people”, the coefficient will
be produced by using only the two "do you like" portions of the two components.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Pre-Processing 3

PRE-PROCESSING

Once a particular input has been processed and tested with all valid absorbers, an
n-length stack of the top "matches” will have been produced. This is an ordered list
of objects or structures, depending on implementation. Each element of the list
contains three components: a reference to the matching behavior, a reference to
the matching absorber within the behavior, and the resultant master coefficient
produced by the matching algorithm.

Given the above described list of top n matches, each behavior's validated exuders
are tested for likely contextual matches. This check produces an additional
aggregate weighting per exuder based on the number and types of context cues
"consumed" by the exuder. This fractionally scaled aggregate is used as a modifier
to the coefficient, allowing SILVIA to have an "attraction” to contextual cues and
interesting behaviors, all other things being relatively equal. The fractional scale
value is adjustable, and can be thought of as a slider that sets "importance of
context” for SILVIA. If global contextual importance is low, SILVIA will tend to use
the "winning" behavior and invoke the most contextually important exuder within
that behavior. However, if importance is high, SILVIA may gravitate toward using a
behavior that has a lower overall coefficient than the clear "winner”, but has more
relevant contextual cues embedded in one of its validated exuders.

If no valid behaviors are found to produce a response, depending on
implementation, the Al can either not respond at all, or can respond in a one or
more generic fashions to let the user know that it didn't understand the user, or was
unable to formulate a response.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Pl’e-PI’OCQSSing 4

PRE-PROCESSING

Multiple Passes for Composite Concepts

The above described algorithm is sometimes invoked twice. The first pass is
always performed as described above, with concepts serving as the base
comparative units in the algorithm. The second pass may be performed with the
following modification: instead of using root concepts as input, an algorithm
attempts to re-map the concepts to an optimal collection of singular and
compound concepts. If, after this re-mapping algorithm, the resultant input chain
Is different than the original singular concept chain, the full algorithm described
above is run again with the new modified input. This difference is easily determined
through a single array length comparison, because if the resultant "compound”
chain is of a different length than the input, then two or more singular concepts
have been re-mapped to a fewer number of compound concepts.

So, why do we re-run the entire input deconstruction algorithm again for these
compound concepts? Because compound concepts can have relationships to other
compound or singular concepts, and it is those relationships that are being tested.
When a searchable n-dimensional tree is produced from both singular AND from
those derived compound concepts, it allows for more variety in user input and
accuracy in interpretation.

For instance, SILVIA may have learned a compound concept such as "go to the
grocery store". She may also have learned that there is another compound concept,
"travel to the market” that serves as a conceptual synonym to this first concept.
They both convey a similar idea, yet when taken as their singular conceptual
components, there are only two related (identical) concepts: to/to and the/the.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Pre-Processing 5

PRE-PROCESSING

Multiple Passes for Composite Concepts

So, if an absorber contains some variation on "go to the grocery store”, if we never
consider compound concepts and their mappings, a user input containing "travel to
the local market" will produce a very low coefficient, even though in reality, the
correlation in meaning is very high.

However, if we make sure to test the absorber having produced an ndimensional
relationship tree containing as the base chain the user input's most likely used
compound concepts, then a high correlation will be found in the above example,
and that higher value will be added to the aggregate used to produce the
coefficient.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Pre-Processing 6

OUTPUT

Using a variety of contextual cues, SILVIA uses a collection of "attraction” or
"goal-seeking” algorithms to select likely knowledge block candidates from which
to perform actions and construct her output, as well as to dynamically construct
the output itself. Those contextual cues can include consumable events, topical
context, or variable states.

Once the base candidate output filters, which we call "exuders”, have been
identified for constructing a response, depending on various contextual factors,
SILVIA can invoke a variety of methods in order to turn this base information into a
final human language output. Along the way, she is able to reference other
knowledge blocks as "expert" information.

As with Input Deconstruction, language rules are automatically inferred from the
human language training data and from the probabilistic nature inherent in the
algorithms. However, the methods employed are, of necessity, fundamentally
different. Instead of extracting meaning from human language input, SILVIA must,
using one or more human language filters, dynamically construct a response that
expresses the necessary output concepts in a meaningful and grammatically
correct fashion.

To do this, SILVIA uses a hybrid of a heavily extended and modified Hidden Markov
Model algorithm, and a conceptual substitution algorithm to produce potentially
endless variety in output. In practice, with smaller numbers of behaviors, exuders,
and conceptual associations, SILVIA will tend to respond using existing exuders
almost "as is". However, as her knowledge base grows large enough, the additional
resources begin to give SILVIA more "dynamic range”. This is because SILVIA is
able to infer larger numbers of probabilistic paths to express a given set of
concepts while maintaining lexical correctness.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Output 7

CONTEXT SENSITIVITY

At its simplest, SILVIA's context sensitivity during output is derived from a
combination of exclusion, attraction, and modification based on the current
context.

What do we mean by "the current context"? It is the current state of SILVIA's brain,
including conversational history, events, variable values, and other data
representing this state. For example, when training SILVIA, a common task is to
attach explicit context cues to an exuder, so that depending on SILVIA's
conversational history, different responses could be invoked contextually from the
same input. Aside from creating behaviors, absorbers (our shorthand for user input
filters), and exuders, a large part of an application trainer's job is leveraging context
cues, the event system, variables, scripting, and the API to control SILVIA's
behaviors in an application-specific way.

Before Output Construction can begin, the Input Deconstruction phase
cherry-picks likely knowledge blocks. However, an exclusion filter is used to
simultaneously REMOVE any output filters (exuders) from consideration if they
cannot possibly be used in the current context. If no exuders within a particular
knowledge block (behavior) are valid within the current context, then that entire
behavior is discarded from consideration.

For each exuder, exclusion can occur if one or more required events does not exist
on the queue, if one or more variable conditions have not been met, if one or more
required contextual cues do not exist, or if a variable used by the raw exuder
content does not exist. Also, an entire knowledge block (behavior) can be
discarded from consideration if its named group is not active in memory, or if it has
no input filters (absorbers). | will describe SILVIA's usage of "absorber- less"
behaviors later in this document.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Co ntext Sensitivity 8

CONTEXT SENSITIVITY
)

For SILVIA, attraction takes several forms, but in this instance, we are talking about
SILVIA's attraction to context or to Interesting behaviors contained in the
remaining non-excluded exuders. Basically, SILVIA is more likely to use an exuder
for output construction if it is consuming one or more events, If it has explicit
contextual cues learned through training, iIf it invokes events or commands, or if
the raw exuder data makes use of variables.

However, all other things being equal, SILVIA is also capable of using implicit
context cues so that, even without explicit contextual training, she can be more
"attracted” to output filters that either have some topical relevance, or that contain
Important conceptual as-yet unexpressed "thoughts".

Once one or more "winning" exuders have been selected through exclusion and
attraction, we can then use the raw exuder concept data as a base to construct and
modify a final response that the user sees, or for more rigid mission-critical
responses, use the exuder(s) “as-is” with little to no modification.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Co ntext Sensitivity 9

CONCEPT SUBSTITUTION

Once SILVIA has constructed a reasonable response using the methods described
above, she is almost ready to say what's on her mind. However, in a manner similar
to Input Deconstruction, SILVIA then uses a two-pass algorithm to introduce even
more potential variety in her output.

First, using similar methods as used by the Input Deconstruction algorithm, SILVIA
attempts to re-map the output's base concepts to an optimal collection of singular
and compound concepts.

Next, for each singular or composite concept in newly remapped output, SILVIA
looks for lexical synonyms. A lexical synonym is one that can ALWAYS be used as
a direct one-to-one replacement in the output's conceptual array. For instance,
"travel to the grocery store” and "go to the market" can be considered lexical
synonyms because you can swap one for the other in almost any conceivable
circumstance.

If there are lexical synonyms to a particular concept, SILVIA randomly chooses
from the collection of two or more lexical synonyms, including the source concept.
If the random selection is a different value than the original source concept, SILVIA
replaces it in the chain. The probability of a particular lexical synonym being used
Is based on actual usage statistics in SILVIA's overall content. This way, in a
manner that is similar to her special HMM implementation, she has a probabilistic
tendency to use language and concepts that are more commonly represented in
her exuders, whereas less used synonymous concepts and phrases will appear less
often in her output.

Now, any composite concepts remaining in the output are split back out into their
singular conceptual components. SILVIA then re-runs the above described random
lexical synonym substation algorithm on those base components. This means that
not only do composite concepts have a chance to get replaced, but that each
singular concept within any composite concept has the same opportunity.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Concept Substitution 1 0

FINAL OUTPUT

After SILVIA has done everything described in this document to produce the
output, she has in her possession a numeric representation of a grammatically
correct final output. All that remains is for her to apply a relatively simple
concept-to-text conversion algorithm to create human readable text. Concurrently,
she also replaces any textually embedded variables with the values contained in
those variables. If the variable is a "complex" variable (see "Events and
Commands"), in that it contains more than one value simultaneously, SILVIA
replaces the reference to the variable with only one of the possible hidden values.
The final resultant text is either directly output to the user, spoken by SILVIA, or
both.

COGNITIVECODE.

@ Copyright © 2016 Cognitive Code.All Rights Reserved. Final Output 1 1

